Chemical Storage

by Antony S
Computers and technology are growing at an astronomical rate, according to Moore the advancement of technology is doubling every 18 months and don’t we see it. This advancement is calling for an increase in the amount of storage due to the fact that everything we do on devices that use and store information. The rise of social networking and other business related needs are what is fueling this rise in information consumption. How do we as consumers of this extraordinarily large market of technology keep it growing. Well the answer to that is to keep developing. Like stated everything that we develop would need to be stored, which if we keep growing might become a problem. Due to the rising need for information storage capacity researchers at MIT and all over the world are looking into a new form of storage that has the potential to have unsurmountable data storage abilities. This new media is not in a conventional display, it is in a micro-structure, DNA.

As common knowledge DNA stands for Deoxy-Ribose Nucleic Acid which refers to the structure of the double helix molecule that is the basic building block of life. So what does DNA do? DNA is a genetic code that gives instructions to cells so they know what characteristics to have and what functions to carry out. It could be said that DNA is the code that let the cells(computer) carry out functions. One might begin to see the correlation between DNA and data storage. The different combinations of bases when interpreted can be likened to binary structure where different combinations of 1’s and 0’s carry out all logical decisions in code. For example the different sequences and appearances of the bases adenine and thymine, and guanine and cytosine are what would represent the one on and one off code that we call binary.

According to an article by Samuel Greengard for the Communication of the ACM gives insight into just how much data these molecules can actually store. He says that during a specific example they took a 54,000 word book and manage to store all of that information in 5.27 megabits which is at a storage density of 5.5 peta-bytes per cubic millimeter. For those that are not aware of the magnitude of this break through, a peta-byte is 1000 tera-bytes which is 1000 giga-bytes which is 1000 mega-bytes and so on. 1 peta byte is equivalent to 1.1259e15. That is a lot of data for one cubic millimeter of media. To put this in perspective as of right now production hard drives are at a storage density of a little less than a tera-byte per inch. So as one can clearly tell this is definitely a piece of research to keep an eye on.

Like with everything there is always a downside. As of right now the cost is the issue. According to an article by an MIT affiliated journal the cost of writing data to DNA is about $16,365 per megabyte. To write the amount of data that will max out the media with be 1,083,841,824 mb X $16,365. There is no mistake that this technology is not feasible to use in production however once there is a way to do this more efficiently and less expensive it will unlock potential never before imagined.

What does this have to do with databases? If we as consumers were able to fathom this much data we would need to create a new basis of the ways in which we store data. A version of SQL could possibly work however given the amount of data to sift through and retrieve there might need to be another form of organization. However once this get figured out we will be able to create data warehouses that can house historical data form the life of all companies many times over. Technologies like Apache Hadoop might be a thing of the past because all information will be present in one area.

While looking at the this new media as a possibility for greatness a lot of the kinks are still not worked out, for example how long does it take for DNA to decay and have to be reengineered? As well as how many times i can be read from before data gets corrupted. All of these things needs to get answered however when they do and if this media becomes able to be rapidly produced the whole industry and concept of information storage and gathering is going to change.

Greengard, S. (1013). New approach to information storage. Retrieved from http://cacm.acm.org/magazines/2013/8/166306-a-new-approach-to-information-storage/fulltext

Hardetsy, L. (n.d.). Storing data in individual molecuels. Retrieved from http://web.mit.edu/newsoffice/2013/storing-data-in-individual-molecules.html

Condliffe, J. (n.d.). Bits stored on a single molecuel. Retrieved from http://gizmodo.com/5925050/bits-stored-on-a-single-molecule-could-lead-to-petabyte-ssds

5 thoughts on “Chemical Storage

  • March 6, 2014 at 1:47 pm
    Permalink

    Why stop at a molecule? IBM is experimenting on storing data on just carbon atoms. In either case, it’s amazing how data could be stored on so few resources. If the process for forming these tiny structures becomes cheaper, we could have multi-petabyte flash drives. Interesting stuff!

    Link to IBM storing data on Carbon atoms:
    http://www.dailymail.co.uk/sciencetech/article-2086247/Invisible-chips-IBM-stores-data-inside-just-12-atoms–spell-words-drive-built-100.html

  • March 6, 2014 at 4:11 pm
    Permalink

    Whoa DNA storage in database management would be a breakthrough technology if they can perfect it and make it into a cheaper product. I remember there being a question during class that could we carry the information ourselves in our blood. i think that would be very interesting if we could but the question was pretty far out there. Great topic i never would have thought something like that would have been possible.

  • March 9, 2014 at 11:59 pm
    Permalink

    When do you think we will reach the brink of storage because since everything just keeps getting smaller but more powerful, how small will be the last big thing?

  • March 17, 2014 at 4:18 pm
    Permalink

    It’s always amazing the ideas and new technologies people come up with for storing information. However, I’m curious as to how they plan on using this particular new way of storing information. While the idea of storing this large amount of information seems useful, the medium that is used to store it, or the idea that people are manipulating DNA to store information is worrisome when considering all the different ways this could be used. It kind of sounds like something out of a Science Fiction movie where the bad guys start changing people’s DNA to fit their purposes.

  • March 20, 2014 at 7:40 pm
    Permalink

    It is wonderful how technology advances and many exponential ways and so is nanotechnology as this idea of storing information in our DNA y the great capacity of storage in a small place, the only problem was the cost of implementing this idea, to reduce the cost of storage. As we move forward in the future will be needing more places and greater capacities of storage. This is a very magnificent idea of creation of storage

Comments are closed.